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Summation of perturbation series of eigenvalues and eigenfunctions of anharmonic oscillators

Marco A. Núñez*
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A perturbation approach to compute the bound states of the Schro¨dinger equationHC5EC with H0

1lV and Cux56`50 is studied. The approach involves solving the corresponding Dirichlet problem
HRCR5ERCR on a finite interval@2R,R# by the Rayleigh-Schro¨dinger perturbation theory~RSPT!. The
method is based on the fact thatER ,CR converge toE,C as R→`. The model problems to study the
summability properties of the RSPT seriesER5(k50

` ER
(k)lk are the anharmonic oscillatorsH5p21x2

1lx2M, with M52,3,4 for which the RSPT produces strongly divergent seriesE5(k50
` E(k)lk. The summa-

tion of the latter series with largel for the octic case is considered as an extremely challenging summation
problem, in part, since it was rigorously proven that the Pade´ approximants cannot converge and the two-point
Padéapproximants, which combine information of the renormalized weak coupling and strong coupling ex-
pansions, give relatively good results. The calculations of this work show that the ordinary Pade´ approximants
from the sole un-normalizedER series for the octic oscillator give accurate results with small or largel. The
coefficientsER

(k) are calculated with the eigenvalue series of an operatorHRn , whose resolvent converges to
that ofHR asn→`. The Pade´ approximants of the RSPT eigenfunction seriesCR5(k50

` cR
(k)lk also provide

accurate results for the octic oscillator.

DOI: 10.1103/PhysRevE.68.016703 PACS number~s!: 02.70.2c, 03.65.Ge, 03.65.Ca, 02.30.Lt
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I. INTRODUCTION

The Rayleigh-Schro¨dinger perturbation theory~RSPT! is
one of the main methods to solve the quantum eigenprob
HC5EC, Cux56`50, whenH can be partitioned into an
unperturbed HamiltonianH0 with known eigenvalues and
eigenfunctions and a perturbationV, H5H01lV @1–7#. The
RSPT yields formal series in powers of the coupling para
eterl,

E~l!;(
k50

`

E(k)lk. ~1.1!

There is an extensive literature on the summation of
series@2,5–20#. The Pade´ approximants have become a sta
dard tool to sum the slowly convergent or divergent ser
@14–20#, and recently nonlinear sequence transformati
have been used for the summation of strongly divergent
ries @9–12#. The Series~1.1! is called weak coupling expan
sion since it is an expansion aroundl50, but if such a
series has to be summed in the strong coupling regime
problem encountered is that the summation methods o
work for small or at the most moderately largel @8,11–13#.

The main approach to compute the eigenvalues in
strong coupling regime has been the substitution of
Hamiltonian H by means of the normalization techniqu
@7,14,21–25# or the variational perturbation methods@26#
which produce an equivalent HamiltonianH* with a better
eigenvalue series. The method studied in this work, wh
will be referred to as the Dirichlet wave functions approa
~DWFA!, belongs to this class of methods. It involves so
ing the eigenproblemHRCR5ERCR for uxu<R(,`),
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whereHR5HR
01lV is the operator defined by the Dirichle

boundary conditionsCRux56R50. The basis of the DWFA
is that the eigensolutionsER , CR converge toE, C as R
→` @27–31#. The results of Sec. IV show that the RSP
yields eigenvalue series

ER~l!5 (
k50

`

ER
(k)lk, ~1.2!

which can be summed more effectively than series~1.1!.
Since the seminal work of Bender and Wu@18–20#, the

anharmonic oscillatorsH5p21x21lx2M (M51,2, . . . )
have provided the examples of strongly divergent eigenva
series because the coefficientsE(k) of series~1.1! behave like
(@M21#k)!/k1/2 ask→`. In the quartic and sextic cases,
was proved that the Pade´ approximants are able to sum seri
~1.1!, but they are numerically useless for largel @8,15–17#.
In the octic case, it was proved rigorously by Graffi a
Grecchi@32# that the Pade´ approximants cannot sum the e
genvalue series. Some renormalization schemes produc
genvalue series that can be summed by Pade´ approximants or
nonlinear sequence transformations ifl is small@12#, but the
summation in the strong coupling regime is considered
challenging problem@8,11–13#.

The transformation of a HamiltonianH into an equivalent
H* having advantageous properties in the troubleso
strong coupling regime can pose some problems, e.g.,
renormalization schemes of Symanzik@15# or Vinette and
Čı́žek @21,22# produce eigenvalue series for the anharmo
oscillators which converge for largel, but the eigensolutions
of the zero-order problem are unknown. There are alterna
approaches for the computation of the coefficients of the c
responding eigenvalue series@23–26#, but the problem is
open in general. The DWFA yields one way to compute
coefficients of series~1.1! when the eigenstates ofH0 are
unknown, a rigorous proof is given in Ref.@33#.
©2003 The American Physical Society03-1
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MARCO A. NÚÑEZ PHYSICAL REVIEW E68, 016703 ~2003!
The zero-order Dirichlet problem is solvable in som
cases@34#, but in general its eigensolutions are unknow
This problem is solved with the substitution of the opera
HR by its projectionHRn5HRn

0 1lVRn on the space gener
ated by a suitable orthonormal set$wRm%m51

n . The eigenval-
ues ofHRn are obtained with a formal series

ERn~l!5 (
k50

`

ERn
(k)lk, ~1.3!

whose coefficientsERn
(k) converge to those of series~1.2! as

n→`. Hence the properties of series~1.2!, ~1.3! are essen-
tially the same for largen, and the coefficientsE(k) of the
series~1.1! can be estimated byERn

(k) ’s with largeR, n. The
results given by the ordinary Pade´ approximants for the octic
oscillator show that series~1.2!, ~1.3! have good numerica
properties.

A dual approach was studied by Cˇ ı́žek et al. @13#, who
showed that the normalization scheme of Vinette and Cˇ ı́žek
@20,21# provides both the weak coupling and the strong c
pling expansions@10# which can be summed simultaneous
with the expectation of obtaining better results than a su
mation method that uses information from one expans
This expectation is supported by the results given by
two-point Pade´ approximants for the octic anharmonic osc
lator @13#, which is considered as an extremely challeng
summation problem for largel @8,11–13#. In Sec. IV, it is
shown that the ordinary Pade´ approximants from the sole
un-normalized and weak coupling series~1.3! give eigenval-
ues as accurate as those reported in Ref.@13# for the octic
oscillator, a result that emphasizes the good summab
properties of series~1.2!, ~1.3!.

There are relatively few works that consider perturbat
calculations of the eigenfunctions@1,2,35–42#. Recent ap-
proaches such as multiple scale perturbation theory@37,38#,
optimized perturbation theory@39,40# give good estimations
of the eigenfunctions for the quartic anharmonic oscillat
but in general the calculation of the trueC, is not easy even
if the eigenvalue series~1.1! is well behaved. Variational o
perturbation methods can yield wave functionsCn that con-
verge in the norm to the trueC whereas the expectatio
value ^Cn ,x2MCn& diverges with someM @42–44# as
n→`. The set of Dirichlet wave functions$CR%R.0 con-
verges in norm@27,28# and is uniformly bounded@29,30# so
that the calculation ofCR with large R yields an accurate
estimation ofC. The results of Sec. V show that the DWF
produces eigenfunction series with properties as good
those of the eigenvalue series~1.2!, ~1.3!.

II. FORMAL RESULTS

Consider the HamiltonianH(l)5H01lV with H05p2

1V0, where V0, V are continuous functions ofx. If the
eigenfunctionsC j 0 of H0 form a complete basis of the spac
L2(2`,`), which will be denoted byL2, the RSPT pro-
ducesformal series of thei th eigenvalueEi(l) and eigen-
function C i(l,x) of H(l),
01670
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Ei~l!;(
k50

`

Eiklk,

C i~l,x!;(
k50

`

c ik~x!lk. ~2.1!

These series will be referred to asEi series andC i series,
respectively. The main result about the convergence of th
series can be summarized as follows@1,2#. Let H be a Hil-
bert space with normi .iH and T(l)5T01lV be a self-
adjoint operator inH. If there are constantsa, b>0 such that

iVuiH<aiuiH1biT0uiH

holds for ‘‘all’’ u, then the eigenvalues and eigenfunctions
T(l) can be represented by analytic functions in the nei
borhood ofl50. In this case,V is referred to as aregular
perturbation ofT0, otherwiseV is calledsingular perturba-
tion of T0. The models of singularly perturbed Hamiltonian
are the anharmonic oscillatorsH5H01lx2M with H05p2

1x2 andM52,3, . . . @18–20#. In this case, theEi series is
asymptotic asl→0 @1,2,8#, but this property does not gua
antee that the eigenvalueEi(l) can be obtained from the
coefficientsEik because different functions may have t
same asymptotic series. IfEik’s satisfy a ‘‘modified strong
asymptotic condition of orderq,’’

UEi~l!2 (
k50

n

EiklkU<Csn11@q~n11!#! ulun11, ~2.2!

then Ei(l) is uniquely determined by the set$Eik%k50
`

@2,8,45#. This condition is satisfied by theEi series of the
anharmonic oscillators@2,8,45#, but for the general Hamil-
tonian H5p21V01lV the correctness of Eq.~2.2! is an
open question.

The basis of the DWFA is the solution of the equation

HR~l!CR
i ~l,x!5ER

i ~l!CR
i ~l,x! ~2.3!

with uxu<R, HR(l) being the Hamiltonian defined by th
Dirichlet boundary conditionsCR

i 50 at x56R. If the
lower part of the spectrum ofH(l) consists of isolated ei-
genvaluesE0(l),E1(l),•••, the eigenstates ofHR(l)
converge to those ofH(l) asR increases,

lim
R→`

uuCR
i ~l,x!2C i~l,x!uu50,

lim
R→`

ER
i ~l!5Ei~l!, ~2.4!

where we defineCR
i [0 for uxu>uRu and i .i denotes the

norm of L2 @27,28#. This result together with theuniform
boundednessof the set$CR

i %R.0 guarantees the correct con
vergence ofCR

i towardC i asR→` @29,30#. Numerical re-
sults @31# suggest that the convergence rate ofCR

i can be
characterized by the relationship

iCR
i 2C i i;10ixRC i2C i i ,
3-2
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wherexR(x)51 for uxu<R andxR50 otherwise. Thus, for
practical purposes the calculation ofER

i (l), CR
i (l,x) on a

suitable interval@2R,R# provides accurate estimations
Ei(l), C i(l,x). Additionally, the eigenvalues obey th
variational inequality@29,30#

Ei~l!<ER
i ~l!<ER8

i
~l! for R8,R. ~2.5!

Let L2
R denote the Hilbert spaceL2(2R,R) and let^,&R , i .iR

be its inner product and norm. From a theoretical point
view there are some advantages in solving Eq.~2.3! by
RSPT. The basic premise of the RSPT is that the eigenfu
tions of the zero-order operatorHR

0[HR(0) form a complete
basis ofL2

R . This premise holds true because the resolven
HR(l) is a compactoperator inL2

R for any pairl, R when
V0, V are continuous. In contrast, the operatorH0 in L2 with
V052e2uxu has a finite number of bounded eigenstates
the RSPT is not applicable. In the context of perturbat
methods, the remarkable feature of the DWFA is that
singular perturbationsV of H0 are regular perturbations of
HR

0 . In fact, if V is continuous it satisfies

iVuiR<aRiuiR1bRiHR
0uiR

with aR5maxuxu<RuVu, bR50; that is,V is aboundedoperator
in L2

R . Hence the analytic perturbation theory@1,2# guaran-
tees that both theER

i andCR
i series,

ER
i ~l!5 (

k50

`

ER
iklk,

CR
i ~l,x!5 (

k50

`

cR
ik~x!lk, ~2.6!

converge for smalll. In contrast, the eigenvalueER
i (l) may

not be uniquely determined by the set$Eik%k50
` when it does

not satisfy Eq.~2.2!.
The exact solution of the zero-order Dirichlet problem

HR
0CR

j 0~x!5ER
j 0CR

j 0~x!, ~2.7!

CR
j 0(x56R)50, is known in some cases@34# but in gen-

eral this problem has to be solved numerically. In this wo
the Dirichlet problem~2.3! is replaced by ann-dimensional
problem,

HRn~l!FRn
i ~l,x!5ERn

i ~l!FRn
i ~l,x!, ~2.8!

whereHRn(l) is given by

HRn~l!5HRn
0 1lVRn ~2.9!

with HRn
0 [PRnHR

0 PRn , VRn[PRnVPRn , where PRn

5(m51
n uwRm&^wRmu is the projection operator on then di-

mensional space generated by the firstn-elements of an or-
thonormal basis$wRm(x)%m51

` of L2
R which satisfies the

boundary conditionwRm(6R)50. The main idea behind
this procedure is that for largen the eigenstatesERn

i (l),
FRn

i (l,x) of HRn are essentially equal to those,ER
i (l),
01670
f
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CR
i (l,x), of HR because the resolvent operator ofHRn(l)

converges to that ofHR(l) in the operator’s norm asn
→` @27,28#; hence we get

lim
n→`

uuFRn
i ~l,x!2CR

i ~l,x!uuR50,

lim
n→`

ERn
i ~l!5ER

i ~l!. ~2.10!

In particular, forl50 the eigensolutions of the zero-ord
problem,

HRn
0 FRn

j 0 ~x!5ERn
j 0 FRn

j 0 ~x!, ~2.11!

converge to those ofHR
0 ,

lim
n→`

uuFRn
j 0 ~x!2CR

j 0~x!uuR50,

lim
n→`

ERn
j 0 5ER

j 0 . ~2.12!

The application of the RSPT to Eq.~2.8! yields the formal
series

ERn
i ~l!5 (

k50

`

ERn
ik lk,

FRn
i ~l,x!5 (

k50

`

fRn
ik ~x!lk, ~2.13!

whose convergence is guaranteed for smalll since the per-
turbationVRn is a bounded operator onL2

R .

III. RELATIONSHIP BETWEEN SERIES

Let us consider the relationship between the formal se
~2.1! and ~2.6!. According to the RSPT in order to compu
series~2.6!, one has to solve the zero-order problem~2.7! for
all j 51,2, . . . , with normalizedCR

j 0’s. Let ER
i ,k50[ER

j 5 i ,0

andcR
i ,k50[CR

j 5 i ,0 . SinceCR
j 0’s form an orthonormal basis

of L2
R , every eigenfunction series coefficientcR

ik has the
Fourier series

cR
ik5(

j 51

`

cj
ikCR

j 0 , k50,1, . . . , ~3.1a!

wherecj
i ,k505d i j andcj 5 i

ik 50 for k>1. The remaindercj
ik’s

are calculated together with the eigenvalue series coeffici
ER

ik with the formulas

ER
ik5Vj 5 i

i ,k21 ,

cj (Þ i )
ik 5~Sj

ik2Vj
i ,k21!/~ER

j 02ER
i0!, ~3.1b!

where the quantities

Sj
ik5 (

k850

k21

ER
i ,k2k8cj

ik8 ,
3-3
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Vj
i ,k215 (

j 851

`

cj 8
i ,k21^CR

j 0 ,VCR
j 80&R ~3.1c!

are obtained from the Fourier series

VcR
i ,k215(

j 51

`

Vj
i ,k21CR

j 0 ,

Sik[ (
k850

k21

ER
i ,k2k8cR

ik85(
j 51

`

Sj
ikCR

j 0 . ~3.1d!

The computation of coefficientsEik, c ik(x) of series~2.1! is
carried out with formulas~3.1a!–~3.1d! where ER

i0 , cR
i0 ,

^CR
j 0 ,VCR

j 80&R are replaced byEi0, c i0, ^C j 0,VC j 80&, re-
spectively. The convergence of the first three quantities
ward the latter three asR→` leads to the convergence of th
coefficients of series~2.6! toward those of series~2.1!.

The convergence ofER
i0 , CR

j 0 to Ei0, C j 0 follows from
Eq. ~2.4! with l50, but thesoleconvergence ofCR

j 0 toward
C j 0 in the L2 norm @Eq. ~2.4!# doesnot guarantee the cor
rectness of equation

lim
R→`

^CR
j 0 ,VCR

j 80&R5^C j 0,VC j 80& ~3.2!

for V5x2M. The examples of wave functionsCn that con-
verge in theL2 norm to the correctC, whereas the expecta
tion value ^Cn ,x2MCn& diverges for some power operato
x2M as n→`, are given in Refs.@42–44#. The additional
condition to guarantee the convergence of^Cn ,x2MCn& is
the uniform boundednessof the set$Cn%n51

` in the x space
~see Refs.@42,44# or Sec. V for details!. The set of Dirichlet
eigenfunctions$CR

j (l,x)%R.0 is uniformly bounded by the
asymptotic form of the correspondingC j (l,x) for l>0
@29,30# and therefore Eq.~3.2! holds true. Thus we have th
equations

lim
R→`

ER
ik5Eik,

lim
R→`

cR
ik~x!5c ik~x!, k50,1, . . . . ~3.3!

There is a similar result between series~2.6! and~2.13!. The
coefficients ERn

ik , fRn
ik (x) are computed with formulas

~3.1a!–~3.1d!, whereER
i0 , cR

i0 , ^CR
j 0 ,VCR

j 80&R are replaced

by ERn
i0 , fR

i0 , ^FRn
j 0 ,VFRn

j 80&R , respectively. SinceV is a
bounded operator inL2

R , the sole convergence of the s
quence$FRn

j 0 %n51
` in theL2

R norm @Eq. ~2.12!# guarantees the

convergence of̂FRn
j 0 ,VFRn

j 80&R ,

lim
n→`

^FRn
j 0 ,VFRn

j 80&R5^CR
j 0 ,VCR

j 80&R .

This result and the convergence ofERn
j 0 , FRn

j 0 to ER
j 0 , CR

j 0

@Eq. ~2.12!# lead to the convergence of the coefficients of t
ERn

i andCRn
ik series,
01670
-

lim
n→`

ERn
ik 5ER

ik ,

lim
n→`

fRn
ik ~x!5cR

ik~x!, k50,1, . . . . ~3.4!

The solution of then-dimensional problem~2.8! by RSPT
has some advantages. The zero-order problem~2.11! can be
solved completely since it has a finite number of solutio
ERn

j 0 , FRn
j 0 which can be computed with the standard nume

cal software. Since there are justn functionsFRn
j 0 , the infi-

nite series~3.1a!– ~3.1d! are replaced by the finite ones an
therefore, the coefficientsERn

ik , fRn
ik can be computed up to

the desired orderk. It could be expected that it is necessa
to carry out calculations with largen to get accurate estima
tions ofER

i (l), andCR
i (l,x) but the numerical results give

below show that this is not the case for anharmonic osci
tors when a trigonometric basis is used.

The Eqs.~3.3! and~3.4! are independent of the singular o
regular character of the perturbationV, a proof of such equa-
tions with tools of functional analysis is given in Ref.@33#. If
lERin , lERi , and lEi denote the convergence radii of th
ERn

i , ER
i , and Ei series, respectively, we can surmise t

following result:

lim
n→`

lERin5lERi ,

lim
R→`

lERi5lEi . ~3.5!

If V is a singular perturbation, we havelERin ,lERi→lEi
50 asn,R→`, although the continuity ofV(x) guarantees
thatlERin , lERi are nonzero for anyR sinceV is a bounded
operator inL2

R . In this case, the sequences$ERn
iK (l)%K50

` ,
$ER

iK(l)%K50
` of the partial sums

ERn
iK ~l!5 (

k50

K

ERn
ik lk,

ER
iK~l!5 (

k50

K

ER
iklk ~3.6!

converge toERn
i (l) and ER

i (l) for ulu,lERin and ulu
,lERi , respectively.

IV. SUMMATION OF EIGENVALUE SERIES

To begin consider the calculation of the ground state
the quartic oscillatorH5p21x21lx4 with the trigonomet-
ric basis

wRm5
sin~mpx/R!

AR
m51,2, . . . . ~4.1!

The set$wm%m51
n530 produces accurate estimationsERn

i0 , FRn
i0

of the first eigensolutionsER
i0 , CR

i0 of HR
0 ~2.7! with several

R values, larger sets$wm%m51
n yield the same results. Table

reports some coefficientsERn
ik for R51, 2.1, 2.5, 5, 10. The
3-4
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coefficients withR51 behave likeERn
ik ;1022k21, and this

suggests that theERn
i series has the convergence rad

lERin;10. However,uERn
ik u increases rapidly asR goes from

2.1 to 10 andk is increased. Table II reports the ratioERn
ik /Eik

with the coefficientEik of the Ei series and we see thatERn
ik

tends toEik asR increases. This confirms the convergence
the coefficientsERn

ik , ER
ik toward Eik as n,R increase@Eqs.

~3.3! and~3.4!# and supports the expectation that the conv
gence radiilERin , lERi tend to thatlEi of theEi series@Eq.
~3.5!#. The quartic anharmonic oscillator haslEi50 @15,18#
and thereforelERin ,lERi→0 asR,n→`, although the ana-
lytic perturbation theory guarantees thatlERin , lERi are
nonzero.

To estimate the eigenvalueEi(l) with the Dirichlet val-
uesERn

i (l), these have to be estimated with a largeR. The
above results show that theERn

i andER
i series diverge with

largel, R so that, apparently, there is no advantage in co
puting such series. However, we can take the following
proach. Instead of making calculations with largeR to com-
puteEi(l) for anyl, we fix l and compute the largestR for
which the partial-sum sequence$ERn

iK (l)%K50
` converges.

This R value depends onl, i, n, and will be denoted by
Rl in . The valuesERn

iK (l51) reported in Table III show tha
$ERn

iK %K50
` converges withR<2.0, henceRl in52.0. Table IV

reports exact eigenvaluesER
i (l) calculated variationally and

shows their convergence towardEi(l) as R increases. Ac-

TABLE I. CoefficientsER,n530
ik for the ground state ofH5p2

1x21lx4. In this table and the following ones, the notation@m#
means310m.

k E1n
ik E2.1n

ik E2.5n
ik E5n

ik E10n
ik

0 3@0# 1@0# 1@0# 1@0# 1@0#

5 1@210# 1@0# 2@0# 2@2# 2@2#

10 5@221# 2@23# 21@1# 24@7# 25@7#

15 3@231# 22@24# 29@1# 3@13# 1@14#

20 3@241# 27@25# 8@2# 24@19# 21@21#

25 2@251# 21@25# 1@4# 5@25# 6@28#

30 2@261# 23@27# 21@5# 26@31# 28@36#

35 2@271# 3@27# 22@6# 7@37# 2@45#

40 1@281# 9@28# 1@7# 28@43# 21@54#

TABLE II. Ratio ERn
ik /Eik betweenERn

ik ’s of Table I and the
coefficientsEik of the correspondingEi series.

k E1n
ik E2.1n

ik E2.5n
ik E5n

ik E10n
ik

0 3@0# 1 1 1 1
5 5@213# 2@24# 1@22# 1 1

10 29@229# 23@211# 2@27# 9@21# 1
15 3@245# 22@218# 28@213# 3@21# 1
20 22@262# 5@226# 26@219# 3@22# 1
25 3@280# 22@234# 2@225# 7@24# 1
30 23@298# 4@244# 1@232# 7@26# 1
35 8@2117# 1@252# 21@239# 3@28# 1
40 21@2135# 27@262# 21@247# 7@211# 1
01670
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cording to this table, eigenvalueER
i (1) has to be estimated

with R>2.8 to getEi(1) with seven exact figures, while th
partial-sum sequence$ERn

iK (1)%K50
` converges forR<2.0.

An alternative way to computeER
i (l) with a ‘‘large’’ R is

the application of summability methods to theERn
i series. In

this work, we use the diagonal Pade´ approximants

ERn
iPK~l!5F (

k50

K/2

akl
kG Y F11 (

k51

K/2

bkl
kG ~4.2!

obtained from the partial sumsERn
iK (l) with K52,4, . . .

@46#. Let Rl in
P be the largestR for which the Pade´ sequence

$ERn
iPK(l)%K converges to a useful estimation ofER

i (l). The
following heuristic argument suggests thatRl in

P is larger than
Rl in . Figure 1 shows a qualitative graph ofR vs the conver-
gence radiuslERin of theERn

i series withlEi50 @Eq. ~3.5!#.
Let lERin

P denote the maximuml for which the Pade´ se-
quence$ERn

iPK(l)%K converges. If the Pade´ approximants ex-
tend the convergence radius of a series, thenlERin

P is greater
thanlERin for eachR and therefore the graph ofR vs lERin

P

is qualitatively as Fig. 1 shows. We see that if$ERn
iK (l)%K

converges with a givenl, the sequence$ERn
iPK(l)%K also

does with a largerR, hence we get

Rl in
P .Rl in .

Finally, if Rl in
P is large enough, the sequence$ERn

iPK(l)%K

converges to a reliable estimation ofEi(l). As we shall see
below this is the case forl from the weak to the strong
coupling regime of the quartic, sextic, and octic oscillato
The calculations were done with 32-digit precision.

Following with the ground state of the quartic oscillato
Table V reports the Pade´ approximantsER,n530

iPK (l) with l

TABLE III. Partial sumsER,n530
iK (l51) for the ground state of

H5p21x21lx4.

K E2.0 n
iK E2.2 n

iK E2.3 n
iK

0 1.075 1.035 1.024
10 1.398 1.399 1.394
20 1.398 1.389 1.169
30 1.398 1.394 2.357
40 1.398 1.393 21.01

TABLE IV. EigenvaluesER
i (l) for the ground state ofH5p2

1x21lx4.

R l50.1 R l51

4.5 1.065285509547 2.8 1.392351935104
5.0 1.065285509544 4.0 1.392351641530
9.0 1.065285509544 5.0 1.392351641530

l510 l5100
2.0 2.449174298327 1.5 4.999417547532
2.5 2.449174072118 2.0 4.999417545137
3.0 2.449174072118 2.5 4.999417545137
3-5



ts
e

e
l

.
e
n

s us

r

d of

y of

-

e
d
e

s
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50.1, 1, 100 and increasingR values. In order to exhibit the
convergence rate, we report the first and the last elemen
a sequence$ERn

iPK(l)%K of approximants, which have th
same figures except the last one. The Pade´ approximants
EiPK(l) from the Ei series are reported with̀ . For l
50.1, there is convergence withR55, 10,` and therefore
Rl in

P 5`. The Pade´ approximants reported forl51, 100
show that the convergence rate of$ERn

iPK(l)%K52
40 is slower as

R and l increase. Forl51, the sequence$ERn
iPK(l)%K52

40

converges withR<4.5, hence we getRl in
P 54.5, which is

large enough to estimateEi(1) with 11 exact figures. Forl
5100 andR51.4, the sequence$ERn

iPK(l)%K52
40 converges to

an estimation ofEi(l) with six exact figures, whereas th
Padésequence$EiPK(l)%K52

40 from the Ei series has a nul
accuracy.

The calculations forl5100, 500 are given in Table VI
We report the first and the last elements of a sequenc
ERn

iPK(l)’s, which have the same figures except the last o
calculations beyondKmax yield ERn

iPK(l)’s which oscillate be-

FIG. 1. Qualitative graph ofR vs the convergence radiuslERin

andlERin
P .
01670
of

of
e,

cause of rounding errors. The convergence pattern allow
to determine the accuracy ofERn

iPK(l)’s when they are seen
as estimations ofER

i (l) or Ei(l). For fixed R and l,
ERn

iPKmin(l) and ERn
iPKmax(l) differ in the last figure, hence

they coincide withER
i (l) except in such a figure. Conside

the bestERn
iPK(l)’s for eachR value and the samel. As

expected, they obey the variational inequality~2.5! asR in-
creases and consequently each value is an upper boun
Ei(l),

Ei~l!<ERn
iPK~l!<ER8n

iPK
~l! for R8,R.

The convergence pattern allows one to get the accurac
eachERn

iPK(l) when it is seen as an approximation ofEi(l).
For example,ER,n530

iPK (500) with R51.10, 1.15, 1.20 has
seven exact figures ofEi(500), a result confirmed by com
parison with the exactEi(l) given at the bottom of Table VI.
These results show that~i! Rlni

P is large enough to estimat
Ei(l) and ~ii ! both theERn

i and ER
i series can be summe

much more effectively than theEi series to provide accurat
estimations ofEi(l) with l from the weak to the strong
coupling regime.

TABLE VI. First and last Pade´ approximants of sequence
$ER,n530

iPK (l)%Kmin

Kmax for the ground state ofH5p21x21lx4.

K l5100 K l5500

R51.40 R51.10
56 4.99941770295 56 8.4616426903
70 4.99941770294 70 8.4616426904

R51.45 R51.15
38 4.99941756608 62 8.461642638
40 4.99941756607 70 8.461642635

R51.50 R51.20
38 4.9994175479 68 8.46164264
40 4.9994175476 76 8.46164269
exa 4.9994175451 8.461642629

aAccurate eigenvaluesEi(l).
TABLE V. First and last Pade´ approximants of the sequences$ER,n530
iPK (l)%Kmin

40 , $EiPK(l)%Kmin

40 for the
ground state ofH5p21x21lx4. EiPK(l) corresponds tò .

K l50.1 K l51 K l5100

R55 R53.5 R51.4
22 1.065285509544 38 1.392351641529 34 4.9994175
40 1.065285509544 40 1.392351641529 40 4.9994177

R510 R54.5 R51.7
36 1.065285509544 38 1.3923516415 32 4.9992
40 1.065285509544 40 1.3923516415 40 4.9994

` ` `

38 1.065285509544 38 1.39235 36 3.33
40 1.065285509544 40 1.39235 40 3.42
exa 1.065285509544 1.392351641530 4.9994175

aAccurate eigenvaluesEi(l) from Table IV.
3-6
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Tables VII–IX give a summary of calculations for th
ground state ofH5221(p21x2)1lV with V5x4, x6, x8

andl51, 103. We report the first and the last elements o
sequence$ERn

iPK(l)%K of Padéapproximants, which have th
same figures except the last one, and the exactEi(l) was
estimated variationally. The results for the sextic case
interesting because they provide accurate approximation
Ei(l) for small or largel whereas the Pade´ approximants
from theEi(l) series have a useless convergence@8,15,17#.
The results for the octic oscillator are remarkably accur
and surprising since they show that the Pade´ approximants
are able to sum theER

i andERn
i series from the weak to th

strong coupling regime, whereas Graffi and Grecchi@32#
proved rigorously that the Pade´ approximants cannot sum th
correspondingEi series for anyl.0.

The RSPT produces weak coupling eigenvalue se
which can be summed for smalll. The main approach to
solve the problem with largel has been the substitution o
the original HamiltonianH by anotherH* with eigenvalue
series having better numerical properties. In this kind
methods, we have the DWFA studied in this work, and
renormalization techniques which can be complemented w
summation techniques such as nonlinear transformat

TABLE VII. PadéapproximantsER,n530
iPK (l) for the ground state

of H5221(p21x2)1lx4.

K l51 K l5103

R53.5 R50.9
66 0.803770651234 50 6.69422085
78 0.803770651234 80 6.69422085
exa 0.803770651234 6.69422085

6.69426b

6.69422085c

6.69422085d

aAccurate eigenvaluesEi(l).
bPadéapproximants from series~4.4!, values from Table III of Ref.
@13#.
cEffective characteristic polynomials from series~4.4!, values from
Table IV of Ref.@13#.
dTwo-point Pade´ approximants from Table VI of Ref.@13#.

TABLE VIII. Padé approximantsER,n530
iPK (l) for the ground

state ofH5221(p21x2)1lx6.

K l51 K l5103

R52.4 R51.0
52 0.804965976056 70 3.850869184
72 0.804965976058 90 3.850869184
exa 0.804965976012 3.85086918 2

3.85080b

3.850869d

aAccurate eigenvaluesEi(l) from Table IV.
bEffective characteristic polynomials, values from Table V of R
@13#.
cTwo-point Pade´ approximants, values from Table VII of Ref.@13#.
01670
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@9–12#, the effective characteristic polynomials metho
~ECPM!, or the two-point Pade´ approximants@13#. The
n-dimensional version of the DWFA@Eqs. ~2.8!, ~2.9!# is
similar to the ECPM since it starts from an orthonormal
$Fn%n51

n in L2 to compute the eigenvalues by means of t
secular problemPn(E)5detu^Fn ,HFm&2Ednmu50, where
the original HamiltonianH5H01lV is replaced by an othe
H* that leads to an effective characteristic polynom
Pn* (E) which produces more accurate eigenvalues@13#.

As an example of the renormalization techniques,
have the scheme of Cˇ ı́žek and Vrscay@22#, which was
worked out in detail by Vinette and Cˇ ı́žek @21#, and Weniger
et al. @12#. The scheme uses the variablex̂5(12k)21/4x
with

l[k~12k!2(M11)/2BM
21

andBM[M (2M21)!!/2M21 to transform the problem (p2

1x21lx2M)C i5EiC i into the equation

Ĥ~k!Ĉ i~k,x!5Êi~k!Ĉ i~k,x!, ~4.3!

where Ĥ(k)5@ p̂21 x̂21k( x̂2M/BM2 x̂2)#, Êi(k)5(1
2k)1/2Ei(l), and Ĉ i(k,x̂)[C i(l,x). The coefficientscik

of the formal series

Êi~k!5 (
k50

`

cikkk ~4.4!

grow similarly to the coefficientsEik of the Ei series for the
quartic, sextic, and octic cases@12#. However, the results o
Ref. @12# show that theÊi series can be summed more effe
tively than theEi series for smalll. Čı́žek and co-workers
@13# combined the ECPM and the Pade´ summation to com-
pute the ground state of the quartic oscillator with theEi and
Êi series. Table VII reports these values forl5103, and
shows that their accuracy is similar to that of the Pade´ ap-
proximantsERn

iPK(l) @47#.
If both the weak coupling and the strong coupling expa

sions are constructed in terms of a same coupling param
we can use summation methods that combine the infor
tion from such expansions to produce, at least in princip
better results than a summation technique that uses infor
tion from one expansion@48#. This is the case of anharmoni

TABLE IX. PadéapproximantsER,n530
iPK for the ground state of

H5221(p21x2)1lx8.

l51 l5103

K R52.1 K R51.05
50 0.82068517861 72 2.833101931
68 0.82068517861 80 2.833101931
exa 0.82068517857 2.833101930

2.8334b

aAccurate eigenvaluesEi(l).
bTwo-point Pade´ approximants from Table VIII of Ref.@13#.

.

3-7



-
r-

th

o
t
m
ir

ad
d

or

e
co

s.

ad
. I

-

th

to

trix

re
o-

rect

-

ar-
r
f

-

ial
f

ult

of

nd-
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oscillators. Following Weniger@10#, the renormalized Hamil-
tonianĤ(k) can be partitioned as follows:

Ĥ~k!5~ p̂21 x̂2MBM
21!1~12k!~ x̂22 x̂2MBM

21! ~4.5!

henceÊi(k) has the series

Êi~k!5 (
k50

`

G ik~12k!k, ~4.6!

which converges in the neighborhood ofk51, or, equiva-
lently, the series

Ei~l!5~12k!21/2(
k50

`

G ik~12k!k

converges for largel @10#, that is, it is a strong coupling
expansion ofÊi(k). This series poses the problem of com
puting the coefficientsG ik since the eigenstates of the unpe
turbed Hamiltonian,p̂21 x̂2MBM

21 , are unknown.G ik’s are
given by the divergent series that can be summed with
nonlinear sequence transformations@10#. Čı́žek et al. @13#
used these coefficients together with those of the weak c
pling expansion~4.4! to sum the series with the two-poin
Padéapproximants. Tables VII–IX report some results fro
Ref. @13# for l5103, and we have a surprising fact that the
accuracy is equal to or lower than that of the ordinary P´
approximantsERn

iPK(l) even when the latter were obtaine
from the ~un-normalized! weak couplingERn

i series, a result
that emphasizes the good properties of theERn

i series.
The convergence of the Pade´ sequence$EiPK(l)%K from

theEi series for the quartic and sextic anharmonic oscillat
is guaranteed by the fact that the coefficientsEik are essen-
tially the coefficients of a Stieltjes series

f ~l!; (
q50

`

~21!qmqlq,

for which there is a uniquer(t) such thatmq5*0
`tqdr(t)

@2,8,15#. However, Graffi and Grecchi@32# proved that for
high-order oscillators the measurer(t) is not unique and,
therefore, the sequence$EiPK(l)%K does not converge. Th
Stieltjes-series argument cannot be applied to prove the
vergence of Pade´ approximantsERn

iPK(l) ~4.2! because the
sign of the coefficientsERn

ik is not alternant as Table I show
The convergence may be explained by the Pade´ conjecture
@16# which concerns the convergence of the diagonal P´
approximants to analytic functions, but no proof yet exists
this conjecture is correct, the approximantsERn

iPK(l) con-
verge uniformly toER

i (l) for smalll since the analytic per
turbation theory guarantees thatER

i (l) is an analytic func-
tion of l @49#.

The excellent numerical convergence of$ERn
iPK%K for the

quartic, sextic, and octic oscillators may be attributed to
smallness of the coefficientsERn

ik . In all the cases studied
here,uERn

ik u with k>1 increases monotonically and tends
uEiku asR increases~see Table I!,
01670
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uER8n
ik u,uERn

ik u,•••,uEiku for R8,R. ~4.7!

This behavior can be attributed to the fact that the ma

elements VRn
j j 85^CRn

j 0 ,VCRn
j 80&R are basically increasing

functions ofR but convergent tôC j 0,VC j 80& as R,n→`,
of course@Eqs. ~3.2!–~3.4!#. For instance, in the caseH0

5p2, V5x2, the trigonometric basis yieldsVRn
j j 8;R2. Ac-

cording to Eq.~4.7!, we can say that the convergence~diver-
gence! rate of theERn

i series is faster~slower! than that of the
Ei series and, therefore, theERn

ik series can be summed mo
effectively than theEi series, a result that can be extrap
lated to theER

i series.

V. SUMMATION OF EIGENFUNCTION SERIES

If V is a regular perturbation ofH0, the C i series con-
verges in theL2 norm; that is, the sequence$C iK(l,x)%K50

`

of the partial sums

C iK~l,x!5 (
k50

K

c ik~x!lk ~5.1!

converge toC i(l,x) in the norm for smalll, uuC iK2C i uu
→0 @1,2#. This convergence does not guarantee the cor
calculation ofC i(l,x) since the set$C iK(l,x)%K50

` has to
be uniformly bounded in thex space. To define such a con
cept, let us denote the expectation value^ f ,S f& of a symmet-
ric operatorSby S( f ) and consider that wave functionsf (x)
are rapidly decaying whenxk( f )5^ f ,xkf &,` holds for all
k>0. Let V denote a bounded region andVc be its comple-
ment. We say that the set$Cn% is uniformly bounded~UB! if
there is one rapidly decayingCB such that the inequality
uCn(x)u<CB(x) holds on a regionVc for largen whereVc

is independent ofn, otherwise $Cn% is nonuniformly
bounded~NUB!. If $Cn%n51

` converges toC in theL2 norm
and is UB, the sequence$xM(Cn)%n51

` converges toxM(C)
for all M>0. Thus one can say thatCn has a correctglobal
convergence on the wholex space asn→`, but if $Cn%n51

`

is NUB the sequence$xM(Cn)%n51
` does not converges to

the correct value for someM @42,44#.
The boundedness property is a suitable criterion to ch

acterize sequences$Cn% calculated with the variational o
perturbation methods. If$wm%m51

` is a complete basis set o
the Sobolev spaceW2,1, the sequence$Fm%m51

` of the varia-
tional wave functions,Fn5(m51

n cnmwm , converges to the
correctC in the energy norm@50#, but in Ref.@44#, it was
proved that$Fn%n51

` can be NUB and yield incorrect expec
tation values. On the other hand, in Ref.@42#, it was shown
that theC i series can yield a NUB sequence of the part
sums $C iK%K50

` even whenV is a regular perturbation o
H0.

If V is a singular perturbation, the main rigorous res
about theC i series is its asymptotic nature@1,2#. This means
that C i(l,x) may not be determined uniquely by the set
coefficientsc ik(x). Additionally, in Ref. @42# we saw that
theC i series can be characterized by the nonuniform bou
edness of the partial-sum sequence$C iK(l,x)%K50

` . These
3-8
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two problems are solved by the DWFA. Since the set
Dirichlet wave functions$CR

i (l,x)%R.0 is UB and con-
verges toC i(l,x) in the L2 norm @29,30#, it is enough to
estimate CR

i (l,x) with ‘‘large’’ R. The computation of
CR

i (l,x) with uxu<R eliminates the nonuniform bounded
ness problem since it is a problem on an unbounded re
of the x space. On the other hand, since singular pertur
tions ofH0 such asV5x2M are regular perturbations ofHR

0 ,
the sequence$CR

iK(l,x)%K50
` of the partial sums

CR
iK~l,x!5 (

k50

K

cR
ik~x!lk ~5.2!

converge toCR
i (l,x) in the norm for smalll, uuCR

iK

2CR
i uuR→0 @1,2#. Hence the sequence$xM(CR

iK)%K50
` con-

verges toxM(CR
i ) for M>0 sincex2M is a bounded operato

in L2
R . These results are easily extended to the seque

$FRn
iK %K50

` of the partial sums

FRn
iK ~l,x!5 (

k50

K

fR
ik~x!lk ~5.3!

from theFRn
i series corresponding to HamiltonianHRn ~2.9!.

Let us see some numerical examples.
Consider the ground-state calculation forH5p21x2

1lx4 with the basiswRm ~4.1!. Figure 2 shows the graph o
x vs log10ufRn

ik /c iku for k510 andR52.5, 5, 7, 10; the ob-
served cusps are due to the zeros of the functions. We
that fRn

ik tends uniformly toc ik as R increases and simila
results are obtained with otherk values. This confirms the
convergence of coefficientsfRn

ik ,cR
ik towardc ik asR,n→`

@Eqs.~3.3!–~3.4!#. Hence we can expect a poor convergen
of both theFRn

i and CR
i series asR,n increase. Instead o

summing these series with largeR, we fix l and estimate the
largest R for which the summation of the series yields
useful estimation ofC i(l,x). The following results show
that R estimated with eigenvalue calculations can be use

FIG. 2. Graph ofx vs log10ufR,n530
ik /c iku with k510 for the

ground state ofH5p21x21lx4.
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The FRn
i series are summed by the so-called functio

Padéapproximants@16#

FRn
iPK~l,x!5F (

k50

K/2

ak
F~x!lkG Y F11 (

k51

K/2

bk
F~x!lkG ,

which are obtained from the partial sumsFRn
iK (l,x) with a

given x value andK52,4, . . . @46#. Table X reports the ra-
tios FRn

iPK/AxRn
0K, C iPK/AxRn

0K at somex values forl51, 100
andn530, K540. The normalization constantAxRn

0K is com-
puted by the Pade´ summation as is explained below
C iPK(l,x) is the Pade´ approximant from theC i series and
the exactC i(l,x)’s are estimated variationally. We see th
FRn

iPK(l,x)’s are very accurate, whereasC iPK(l,x)’s have a
poor or null accuracy. This result is reflected in the graphs
x vs log10uFRn

iPKu/Cas , log10uC iPKu/Cas plotted in Fig. 3 for
l5100 where

TABLE X. Functional Pade´ approximants for the ground stat
of H5p21x21lx4. The ratiosFRn

iPK/AxRn
0K, C iPK/AxRn

0K with K
540, n530 are reported,C iPK corresponds toR5`.

l51 AxRn
0K51.0165062

R x50 x53.5

4 0.8347097115 5.340719@28#

` 0.884708 21.3@28#

exa 0.8347097115 5.340717@28#

l5100 AxRn
0K51.118298

x50 x51
1.5 1.16709754 0.01979228
` 1.07 0.09
exa 1.16709758 0.01979230

1.70b 0.01885b

aAccurate eigenfunctionC i(l,x).
bValues taken from Table I of Ref.@39#.

FIG. 3. Graphs ofx vs log10uFRn
iPKu/Cas and log10uC iPKu/Cas

for the ground state ofH5p21x21lx4 with R51.05, n530.
3-9
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Cas~l,x!5exp~2l1/2uxu3/3!

is the asymptotic form of the exactC i @38#. In agreement
with the uniform boundedness of the set$CR

i (l,x)%R.0

@29,30#, FRn
iPK(l,x) remains bounded byCas asK increases.

The ‘‘largeness’’ ofR51.05 guarantees thatFRn
iPK(l,x) is an

accurate estimation ofC i(l,x) on @0,R# except in a small
vicinity of x5R where FRn

iPK(l,x) satisfies the Dirichlet
boundary condition.

The convergence of the sequence$FRn
iPK(l,x)%K is re-

flected by the Pade´ approximants

xRn
MK5F (

k50

K/2

ak
MlkG Y F11 (

k51

K/2

bk
MlkG

obtained from the firstK terms of the expectation value s
ries

xM~FRn
i !5 (

k50

` S (
m50

k

^fRn
i ,k2m ,xMfRn

im&RD lk.

Table XI reportsxRn
M50,K[iFRn

iPKiR
2 and the ratioxRn

MK/xRn
0K for

M52,4 andl5500. We see thatxRn
MK’s coincide with the

values from the exactC i(l,x) estimated variationally.
The calculations for the ground state ofH5221(p2

1x2)1lV with V5x6,x8 andl51, 103 are given in Tables
XII and XIII; the exactCR

i (l,x) andC i(l,x) are calculated
variationally. Table XII shows thatFRn

iPK(l,x)’s are accurate

TABLE XI. PadéapproximantsxR,n530
MK for the ground state of

HR5p21x21lx4 with l5500, R51.15, 50<K<60.

^x0& ^x2& ^x4&

1.280573 4.547445@22# 5.580462@23#

exa 4.547445@22# 5.580462@23#

aValues from the accurateC i(l,x).

TABLE XII. Functional Pade´ approximants for the ground stat
of H5221(p21x2)1lV with V5x6, x8. The ratio FRn

iPK/Ar Rn
0K

with Kmin<K<90 andn530 is reported.

l51 l5103

V5x6 FR52.4,n
iP,K>52 FR51.0,n

iP,K>52

x50 0.877379780 1.31546068
0.877379780a 1.31546068a

x5.5 0.710919869 0.33010483
0.710919869a 0.33010483a

x52 6.40764@24#

6.40768@24#a

V5x8 FR52.1,n
iP,K>44 FR51.05,n

iP,K>56

x50 0.885440760 1.2230217
0.885440760a 1.2230217a

x51 0.312207486 2.68@25#

0.312207486a 2.70@25#a

aAccurate values of eigenfunctionC i(l,x).
01670
estimations ofC i(l,x) except in the vicinity ofx5R. The
graph ofx vs the ratioFRn

iPK/CR
i is plotted in Fig. 4 for the

octic oscillator withl5103. We observe a uniform conver
gence of$FRn

iPK(l,x)%K towardCR
i (l,x). Table XIII reports

the Pade´ approximantsxRn
MK which coincide with the values

from the exactC i(l,x). These results show that the Pa´
approximantsFRn

iPK(l,x) provide accurate estimations o
C i(l,x) for l from the weak to the strong coupling regim

Recent perturbation approaches consider the calcula
of eigenfunctions. Table X reports the estimations
C i(l,x) obtained with the so-called optimized perturbati
theory for the ground state ofH5p21x21lx4 with l
5100 @39,40#. A comparison between these values and
PadéapproximantsFRn

iPK(l,x) shows that the latter are sig
nificantly more accurate. The multiple scale perturbat
theory@37,38# was successfully applied to the eigenfuncti
calculations of the quartic anharmonic oscillator, but its e
tension to the sextic and octic oscillators is not easy since
method involves the solution of nonlinear operator eq
tions. A renormalization scheme was used in Ref.@41# to
estimate the eigenfunctions with a series that converge

TABLE XIII. PadéapproximantsxR,n530
MK for the ground state of

H5221(p21x2)1lV with V5x6,x8. The valuesxRn
M50,K and

xRn
MK/xRn

0,K with M52, 4 are reported.

l51 l5103

V5x6 r R52.4,n
M ,K>34 r R51.0,n

M ,K>46

^x0& 1.070075 1.185283
^x2& 0.238707 4.592118@22#

^x4& 0.150127 5.432953@23#

V5x8 r R52.1,n
M ,K>48 r R51.05,n

M ,K>46

^x0& 1.067079 1.131956
^x2& 0.225647 6.033521@22#

^x4& 0.130854 9.163312@23#

FIG. 4. Graph ofx vs FRn
iPK/CR

i for the ground state ofH
5221(p21x2)1lx8 with R51.05, n530.
3-10
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the norm, but the boundedness property of the correspon
partial-sum sequence was not investigated.

VI. DISCUSSION

The DWFA has some advantages from a theoretical p
of view. The basic premise of the RSPT is the completen
in L2 of the eigenfunctions ofH05p21V0, this excludes
potentials such asV052e2uxu, while the RSPT is applicable
to the Dirichlet eigenproblem~2.3! because the compactne
of the resolvent ofHR

0 guarantees that its eigenfunction
form a complete basis ofL2

R . If V is a singular perturbation
the eigensolutionsEi(l), C i(l,x) may not be determined
uniquely by their formal series. This problem of uniquene
which was solved for the anharmonic oscillators, is open
a continuous and singular perturbationV. In contrast, such a
problem disappears with the DWFA sinceV is a regular per-
turbation ofHR

0 .
Since the coefficientsERn

ik converge toER
ik asn→` ~3.4!,

the results obtained with theERn
i series can be extrapolate

to the ER
i series. The numerical results show that theERn

i

series can be summed much more effectively than theEi

series. By simplicity, theERn
i series were summed with th

ordinary Pade´ approximantsERn
iPK(l). The Pade´ conjecture

may be an explanation for the convergence of Pade´ approxi-
mantsERn

iPK(l) for small l, but the excellent numerical re
sults can be attributed to the ‘‘smallness’’ of coefficientsERn

ik

@Eq. ~4.7!#. It is a surprising result thatERn
iPK(l)’s give accu-

rate estimations ofEi(l) for anharmonic oscillators with
small or largel. The results for the octic oscillator are pa
ticularly remarkable since in this case the Pade´ approximants
EiPK(l) from the Ei series do not converge for anyl.0
@32#.

Renormalization methods give a way to compute eig
values in the strong coupling regime. The renormaliz
HamiltonianĤ ~4.3! is interesting because, as was shown
Čı́žek et al. @13#, it produces both the weak coupling and t
strong coupling expansions which can be summed simu
neously with the two-point Pade´ approximants to obtain ac
curate eigenvaluesEi(l) for small or largel. It is surprising
that the ordinary Pade´ approximantsERn

iPK(l), which were
obtained with a sole weak coupling expansion from
‘‘un-normalized’’ Hamiltonian HRn , yield estimations
of Ei(l) as accurate as those obtained by Cˇ ı́žek et al. @13#.
This result emphasizes the good properties of theERn

i andER
i

series. Of course, such properties can be exploited with o
summability methods. For instance, if the DWFA is appli
to HamiltonianĤ ~4.3!, one can expect that the correspon
ing two-point approximants will yield better results.

The methods that replace the original HamiltonianH by
an otherH* with better eigenvalue series can lead to a ze
order problem with unknown eigenstates, as occurs with
partition ~4.5! of HamiltonianĤ ~4.3!, and the DWFA is not
an exception. Although the eigenstates ofHR

0 are known in
some cases@34#, in general such eigenstates have to be e
mated numerically. We can apply other methods such
finite-element or finite-difference methods which replaceHR

0
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by an n-dimensional versionH̃Rn
0 , whose eigenstatesẼRn

i ,

C̃Rn
i converge to those ofHR

0 @27,28#. These methods and th

RSPT produceẼRn
i and C̃Rn

i series whose coefficients con
verge to those of theERn

i andCRn
i series@Eq. ~3.4!#. Thus,

the DWFA gives a general approach to compute the coe
cients of theEi and C i series when the eigenstates of t
unperturbed Hamiltonian are unknown. For instance, the
efficients of some strong coupling series such as Eq.~4.6!,
whose calculation has been the subject of several stu
@10,22–26#, can be computed with the series of the cor
sponding operatorHRn .

The main result of theC i series whenV is a singular
~regular! perturbation is the asymptotic nature~convergence
in the L2 norm! @1,2#. The calculation of the trueC i(l,x)
requires a UB partial-sum sequence$C iK(l,x)%K , but it can
be NUB even ifV is regular @42#. The calculation of the
Dirichlet eigenfunctionsCR

i (l,x) eliminates the nonuniform
boundedness problem. The functional Pade´ approximants
FRn

iPK(l,x), which yield accurate estimations ofC i(l,x) for
the sextic and octic oscillators in the strong coupling lim
show the excellent properties of theCR

i andCRn
i series. To

the best of our knowledge, perturbation calculations of th
wave functions have not been reported in the literature.

In principle the equationHC i5EiC i can be solved by
means of ann-dimensional problem such as Eq.~2.8!. This
approach, which is called ‘‘variation-perturbation’’ theor
~see, e.g., Ref.@4#!, involves solving then-dimensional prob-
lem (Hn

01lVn)Fn
i 5En

i Fn
i by means of a perturbation

method, where Hn
0[PnH0Pn , Vn[PnVPn , Pn

5(m51
n uwm&^wmu, and $wm%m51

` is an orthonormal basis o
L2. Since the operatorVn is bounded inL2, the formal series

En
i ~l!5(

k

`

En
iklk, Fn

i ~l,x!5(
k

`

fn
iklk

have a nonzero convergence radius for anyn, but these series
or the functionsFn

i may have bad numerical properties
n→`. Let us consider the convergence arguments beh
Eqs. ~3.2! and ~3.3!. The uniform boundedness of the s
$CR

j 0%m51
` and itsL2 convergence guarantee the convergen

of ^CR
j 0 ,x2MCR

j 80&R to ^C j 0,x2MC j 0& asR→`. In contrast,
the variational sequence$Fn

j 0%n51
` can be NUB and therefore

the quantity^Fn
j 0 ,VFn

j 80& can converge to a wrong limit o
divergen→` even whenV is a regular perturbation. In this
case, the coefficientsEn

ik and, consequently, theEn
i series

itself do not converge asn→`. The examples of variationa

sequences for whicĥFn
j 0 ,x2MFn

j 80& diverge with 2M>6
are given in Refs.@43,44#. If $Fn

j 0%n51
` is UB, $En

ik%n51
` con-

verges toEik, a result that can be used to compute the co
ficientsEik when the eigenstates ofH0 are unknown, and the
properties~good or bad! of both theEn

i andEi series will be
similar asn increases. On the other hand, the calculation
Fn

i (l,x)’s does not guarantee the calculation of the tr
C i(l,x) since the set$Fn

i (l,x)%n51
` , which is a variational

sequence itself, may be NUB@44#.
3-11
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The formal results of the DWFA are independent of t
basis set$wRm%m51

` used to solve the Dirichlet problem~2.3!,
but the numerical results obtained with the anharmonic
cillators can be attributed in part to the use of the trigon
metric basis~4.1!. The numerical efficiency of the DWFA
depends of the basis set$wRm%m51

` , which should be chosen
according to the problem in question. Recent perturba
methods deal with the one-dimensional eigenfunction ca
lations @37–40#, but their extension to the high-dimension
problems is not trivial. The DWFA provides eigenvalues a
eigenfunctions and, from a theoretical point of view, its e
tension to many particle problems is easy.

VII. SUMMARY

We have observed the following points.
~i! The DWFA converts the singular perturbation pro

lemsH5H01lV into the regular ones and, therefore, solv
the problems posed by the asymptotic character of theEi and
C i series whenV is a singular perturbation ofH0.

~ii ! The DWFA provides a general method to compute
coefficients of theEi andC i series@Eqs.~3.3!, ~3.4!#. This is
important when a renormalization technique yields a ze
order problem whose eigenstates are unknown.

~iii ! The numerical results show that the convergen
l

cs

s

or

e

.

s.
.
f
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properties of the series given by the DWFA turn out to
very good, even for the strongly anharmonic oscillators. T
is clearly illustrated by the Pade´ summation of the series fo
the un-normalized octic case, which is known to be noto
ously difficult and many standard resummation techniq
fail in this case.

~iv! To date, the DWFA is the unique approach that,
rigorous mathematical terms, guarantees the calculation
the UB sequences of approximating wave functions a
therefore, the correct calculation of wave functions. So
renormalization schemes convert a singular perturba
problemH01lV into a regular oneȞ01ľV̌, but this does
not guarantee the correct calculation of the exact eigenfu
tion Č i since theČ i series can be NUB even when it con
verges in the norm ofL2(2`,`).

~v! The formal results of this paper consider the gene
problemH5p21V01lV, whereV0, V are continuous func-
tions but some results can be extended to potentials w
Coulomb-type singularities as well as to some many part
problems. This will be shown in a forthcoming work.

ACKNOWLEDGMENTS

I wish to thank Professor Gustavo Izquierdo and Profes
Ma. Trinidad Nunez P. for their suggestions and support.
efs.

um

A

oc.

.

@1# T. Kato, Perturbation Theory for Linear Operators~Springer,
New York, 1966!.

@2# M. Reed and B. Simon,Methods of Modern Mathematica
Physics IV: Analysis of Operators~Academic, New York,
1978!.

@3# J. Killinbeck, Techniques in Applied Quantum Mechani
~Nutterworths, London, 1975!.

@4# R. McWeeney,Methods of Molecular Quantum Mechanic,
2nd ed.~Academic Press, London, 1992!.

@5# Proceedings of the Sanibel Workshop on Perturbation The
at Large Order, edited by P.O. Lowdin and Y. O¨ hrn ~Wiley,
New York, 1982!.

@6# G.A. Arteca, F.M. Ferna´ndez, and E.A. Castro,Large Order
Perturbation Theory and Summation Methods in Quantum M
chanics~Springer, Berlin, 1989!.

@7# Large Order Behavior of Perturbation Theory, edited by J.C.
Le Guillou and J. Zinn-Justin~North-Holland, Amsterdam,
1990!.

@8# B. Simon, Int. J. Quantum Chem.21, 3 ~1982!.
@9# E.J. Weniger, Comput. Phys. Rep.10, 189 ~1989!.

@10# E.J. Weniger, Ann. Phys.~N.Y.! 246, 133 ~1996!.
@11# E.J. Weniger, Int. J. Quantum Chem.57, 265 ~1997!.
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